metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A two-dimensional holmium(III) coordination polymer: poly[aminotris(*µ*-4-aminobenzoato)holmium(III)]

Yong-Lan Feng,* Jin-Sheng Xu, Dai-Zhi Kuang and Yun-Lin Peng

Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China Correspondence e-mail: hnylfeng@163.com

Received 11 July 2007; accepted 7 August 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.021; wR factor = 0.052; data-to-parameter ratio = 12.4.

In the title compound, $[Ho(C_7H_6NO_2)_3(H_2O)]_n$, a twodimensional coordination polymer, the eight-coordinate Ho^{III} ions are bridged by two carboxylate groups from two 4aminobenzoate ligands, forming a centrosymmetric dinuclear block. These blocks are further connected by 4-aminobenzoate ligands, yielding a two-dimensional network; a three-dimensional supramolecular structure is then formed via hydrogen bonds.

Related literature

For related literature, see: Chen et al. (2006); Chu et al. (2001); Kepert & Rosseinsky (1998); Reineke et al. (1999).

Experimental

Crystal data

$[H_0(C_7H_6NO_2)_3(H_2O)]$	V = 2153.5 (4) Å ³
$M_r = 591.33$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 9.772 (1) Å	$\mu = 3.72 \text{ mm}^{-1}$
b = 22.761 (3) Å	T = 294 (2) K
c = 9.832 (1) Å	$0.24 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 100.02 \ (1)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\rm min}=0.413,\;T_{\rm max}=0.512$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	H atoms treated by a mixture of
$wR(F^2) = 0.052$	independent and constrained
S = 1.03	refinement
4001	$\Delta \rho_{\rm max} = 0.44 \text{ e} \text{ \AA}^{-3}$
322 parameters	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$
10 restraints	

4521 measured reflections

 $R_{\rm int} = 0.014$

4001 independent reflections

2954 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-	bond geometry	′ (A, °).
-----------	---------------	---------	----

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O6^{i}$ $N1 - H1B \cdots N2^{ii}$ $N2 - H2A \cdots O7^{iii}$ $N3 - H3A \cdots O5^{iv}$ $O7 - H7B \cdots O2$ $O7 - H7A \cdots N3^{v}$	$\begin{array}{c} 0.861 \ (10) \\ 0.850 \ (10) \\ 0.849 \ (10) \\ 0.858 \ (10) \\ 0.816 \ (10) \\ 0.817 \ (10) \end{array}$	2.046 (12) 2.510 (11) 2.43 (3) 2.23 (2) 2.000 (18) 2.079 (16)	2.902 (3) 3.360 (5) 3.139 (5) 2.974 (4) 2.773 (3) 2.875 (4)	172 (3) 177 (3) 142 (3) 145 (3) 158 (4) 165 (5)
		1 2	1 1	1 2

Symmetry codes: (i) x - 1, y, z - 1; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (v) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2003); software used to prepare material for publication: SHELXTL.

This work was supported by the Construct Program of the Key Discipline in Hunan Province and Hunan Provincial Natural Science Foundation of China (grant No. 06JJ2015).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2020).

References

- Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT. Version 7. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m1550m1552
- Chu, D. Q., Xu, J. Q., Duan, L. M., Wang, T. G., Tang, A. Q. & Ye, L. (2001). Eur. J. Inorg. Chem. pp. 1135-1137.
- Kepert, C. J. & Rosseinsky, M. J. (1998). Chem. Commun. pp. 31-32.
- Reineke, T. M., Eddaoudi, M., Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590-2594.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SHELXTL (Version 6.12) and SADABS (Version 2.10). University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2338 [doi:10.1107/S1600536807038846]

A two-dimensional holmium(III) coordination polymer: poly[aminotris(μ -4-aminobenzoato)holmium(III)]

Y.-L. Feng, J.-S. Xu, D.-Z. Kuang and Y.-L. Peng

Comment

During the last two decades, lanthanide complexes have received much attention because of their interesting photophysical properties which have potential applications in the luminescent probes for chemical or biological macromolecules and the active center for luminescent materials (Chu *et al.*, 2001; Kepert & Rosseinsky, 1998; Reineke *et al.*, 1999; Chen *et al.*, 2006;). We have chosen 4-aminobenzonitrile as ligand and investigated its reaction with Ho_2O_3 under hydrothermal synthesis, and report herein the X-ray crystal structure of the novel terbium coordination polymer, [Ho(4-aminobenzoate)₃(H₂O)]_n, (I).

In (I) (Fig. 1), the Ho^{III} center is eight-coordinated by six O atoms from five different 4-aminobenzoate ligands, one N atoms from a 4-aminobenzoate ligand and one O atoms from a coordinated water molecule, thus the Ho^{III} ion has a distorted bicapped trigonal prism. In the coordination polyhedron of Ho^{III} ion, the Ho—O distance of carboxyl is in the range 2.337 (2)–2.482 (2) Å, and the mean Ho—O bond length is 2.428 (2) Å. The Ho—O bond length involving the coordination water is 2.546 (2) Å, and the Ho—N distance is 2.691 (3) Å. In (I), each 4-aminobenzoate ligand adopts an O,*O*-bidentate bridging mode using a carboxylate group. Adjacent Ho^{III} centers are doubly bridged by the ligands, forming a big eight-membered ring, while the other two Ho atoms has a 16-membered ring bridged by the carboxylate groups and amino groups (Fig. 2).

Experimental

A mixture of Ho_2O_3 (0.25 mmol), 4-aminobenzonitrile (2.0 mmol), H_2O (10 ml, 0.55 mmol) and two drops of acetic acid with the pH value of about 3.0, was heated in a 25 ml capacity Teflon-lined reaction vessel at 160 ° for 5 days, the reaction mixture was cooled to room temperature over a period of 48 h. The product was collected by filtration, washed with H_2O and air-dried, colorless crystals suitable for X-ray analysis were obtained. Analysis calculated (%): C, 42.62; H, 3.38; N, 7.10%; Found: C, 43.05; H, 3.32%; N, 7.17%.

Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding, (C—H distances are 0.93 Å), with $U_{iso}(H) = 1.2U_{eq}(C)$. The water H atoms found from Fourier difference maps were refined with restraints for O—H distances (0.816–0.817 Å) and $U_{iso}(H)$ fixed at 0.05.

Figures

Fig. 1. The *ORTEP* drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. The symmetry codes are: A: -x + 1, -y + 1, -z + 2 B: -x + 1, -y + 1, -z + 1C: -x, -y + 1, -z + 1

Fig. 2. Projection showing the two-dimensional layer structure of the compound (I).

poly[aminotris(µ-4-aminobenzoato)holmium(III)]

Crystal data	
[Ho(C ₇ H ₆ NO ₂) ₃ (H ₂ O)]	$F_{000} = 1160$
$M_r = 591.33$	$D_{\rm x} = 1.824 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
a = 9.772 (1) Å	Cell parameters from 30 reflections
b = 22.761 (3) Å	$\theta = 4.9 - 13.5^{\circ}$
c = 9.832 (1) Å	$\mu = 3.72 \text{ mm}^{-1}$
$\beta = 100.02 \ (1)^{\circ}$	T = 294 (2) K
V = 2153.5 (4) Å ³	Block, colorless
Z = 4	$0.24 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	4001 independent reflections
Radiation source: fine-focus sealed tube	2954 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.014$
T = 294(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = 0 \rightarrow 11$
$T_{\min} = 0.413, \ T_{\max} = 0.512$	$k = 0 \rightarrow 27$
4521 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.021$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.027P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
4005 reflections	$\Delta \rho_{max} = 0.44 \text{ e } \text{\AA}^{-3}$
322 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
10 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Но	0.481566 (14)	0.501123 (7)	0.758702 (13)	0.01914 (7)
01	0.3005 (2)	0.52755 (10)	0.5758 (2)	0.0273 (5)
O2	0.3446 (2)	0.48881 (9)	0.3815 (2)	0.0288 (6)
O3	0.3698 (3)	0.54166 (10)	0.9282 (2)	0.0334 (6)
O4	0.3944 (3)	0.58076 (11)	1.1353 (2)	0.0371 (6)
O5	0.5125 (2)	0.60754 (10)	0.7181 (2)	0.0288 (5)
O6	0.6608 (2)	0.56728 (9)	0.8857 (2)	0.0272 (5)
N1	-0.2838 (3)	0.57271 (13)	0.1850 (3)	0.0245 (6)
N2	0.1092 (4)	0.79410 (17)	0.7699 (5)	0.0550 (10)
N3	0.8320 (4)	0.83857 (14)	0.9754 (3)	0.0373 (8)
C1	0.0375 (3)	0.56663 (14)	0.4452 (3)	0.0253 (7)
H1	0.0687	0.5791	0.5354	0.030*
C2	-0.0937 (3)	0.58147 (13)	0.3808 (3)	0.0258 (7)
H2	-0.1493	0.6049	0.4263	0.031*
C3	-0.1444 (3)	0.56162 (14)	0.2473 (3)	0.0242 (7)
C4	-0.0586 (3)	0.52806 (16)	0.1795 (3)	0.0317 (8)

H4	-0.0911	0.5148	0.0903	0.038*
C5	0.0748 (4)	0.51421 (14)	0.2436 (3)	0.0306 (8)
Н5	0.1318	0.4920	0.1971	0.037*
C6	0.1244 (3)	0.53352 (14)	0.3786 (3)	0.0219 (7)
C7	0.2652 (3)	0.51582 (12)	0.4497 (3)	0.0217 (7)
C8	0.2766 (4)	0.68773 (15)	1.0271 (4)	0.0343 (8)
H8	0.3135	0.6867	1.1209	0.041*
C9	0.2192 (4)	0.73920 (16)	0.9689 (4)	0.0401 (9)
Н9	0.2185	0.7725	1.0237	0.048*
C10	0.1626 (4)	0.74188 (15)	0.8301 (4)	0.0370 (9)
C11	0.1606 (4)	0.69082 (16)	0.7522 (4)	0.0381 (9)
H11	0.1184	0.6912	0.6599	0.046*
C12	0.2196 (4)	0.64017 (15)	0.8089 (3)	0.0339 (8)
H12	0.2193	0.6069	0.7538	0.041*
C13	0.2802 (3)	0.63734 (14)	0.9478 (3)	0.0259 (7)
C14	0.3513 (3)	0.58321 (14)	1.0068 (3)	0.0254 (7)
C15	0.8018 (4)	0.67744 (15)	0.9384 (3)	0.0319 (8)
H15	0.8548	0.6442	0.9657	0.038*
C16	0.8547 (4)	0.73237 (15)	0.9764 (4)	0.0348 (8)
H16	0.9433	0.7358	1.0286	0.042*
C17	0.7770 (4)	0.78271 (14)	0.9375 (3)	0.0303 (8)
C18	0.6457 (4)	0.77666 (15)	0.8593 (4)	0.0384 (9)
H18	0.5922	0.8098	0.8326	0.046*
C19	0.5935 (4)	0.72156 (15)	0.8207 (4)	0.0342 (8)
H19	0.5053	0.7182	0.7676	0.041*
C20	0.6701 (4)	0.67137 (14)	0.8595 (3)	0.0269 (7)
C21	0.6117 (3)	0.61238 (14)	0.8182 (3)	0.0257 (7)
07	0.4542 (3)	0.41368 (11)	0.5947 (2)	0.0293 (5)
H1A	-0.292 (4)	0.5723 (15)	0.0963 (11)	0.035 (10)*
H1B	-0.311 (3)	0.6058 (8)	0.210 (3)	0.034 (10)*
H2A	0.067 (3)	0.8143 (14)	0.822 (3)	0.042 (12)*
H2B	0.062 (4)	0.792 (2)	0.689 (2)	0.12 (3)*
H3A	0.888 (3)	0.8377 (15)	1.0532 (19)	0.035 (11)*
H3B	0.768 (3)	0.8636 (14)	0.981 (3)	0.054 (14)*
H7A	0.520 (3)	0.3920 (16)	0.590 (5)	0.075 (17)*
H7B	0.427 (4)	0.4282 (16)	0.519 (2)	0.051 (13)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Но	0.01833 (9)	0.01936 (9)	0.01852 (9)	0.00174 (9)	-0.00016 (5)	-0.00054 (8)
O1	0.0259 (12)	0.0290 (12)	0.0234 (12)	0.0024 (10)	-0.0058 (10)	-0.0016 (10)
O2	0.0213 (11)	0.0363 (15)	0.0289 (11)	0.0033 (10)	0.0044 (10)	-0.0005 (10)
O3	0.0408 (15)	0.0235 (12)	0.0386 (14)	0.0086 (11)	0.0142 (12)	0.0004 (11)
O4	0.0403 (15)	0.0374 (15)	0.0291 (13)	0.0108 (12)	-0.0063 (12)	0.0032 (11)
O5	0.0308 (13)	0.0235 (12)	0.0274 (12)	-0.0008 (10)	-0.0082 (11)	-0.0003 (10)
O6	0.0312 (13)	0.0218 (12)	0.0255 (12)	0.0006 (10)	-0.0039 (10)	0.0026 (10)
N1	0.0188 (14)	0.0298 (16)	0.0235 (15)	0.0026 (12)	-0.0002 (12)	-0.0014 (13)

N2	0.062 (3)	0.038 (2)	0.066 (3)	0.0252 (19)	0.013 (2)	0.0180 (19)
N3	0.041 (2)	0.0280 (17)	0.042 (2)	-0.0095 (15)	0.0051 (16)	-0.0054 (14)
C1	0.0233 (17)	0.0300 (18)	0.0205 (15)	-0.0028 (14)	-0.0013 (13)	-0.0046 (14)
C2	0.0230 (17)	0.0264 (17)	0.0276 (17)	0.0012 (14)	0.0036 (14)	-0.0059 (14)
C3	0.0189 (16)	0.0293 (17)	0.0231 (16)	0.0003 (14)	0.0002 (13)	0.0047 (13)
C4	0.0234 (18)	0.048 (2)	0.0216 (16)	0.0016 (17)	-0.0027 (14)	-0.0081 (16)
C5	0.0239 (17)	0.044 (2)	0.0245 (17)	0.0034 (15)	0.0051 (13)	-0.0073 (14)
C6	0.0180 (16)	0.0244 (17)	0.0220 (16)	0.0001 (13)	-0.0001 (13)	0.0035 (13)
C7	0.0189 (16)	0.0184 (17)	0.0272 (16)	-0.0038 (12)	0.0024 (14)	0.0018 (12)
C8	0.032 (2)	0.036 (2)	0.0332 (19)	0.0071 (17)	0.0021 (16)	-0.0032 (16)
C9	0.045 (2)	0.0256 (19)	0.049 (2)	0.0056 (17)	0.0083 (19)	-0.0072 (17)
C10	0.034 (2)	0.0284 (19)	0.051 (2)	0.0120 (16)	0.0146 (18)	0.0098 (17)
C11	0.044 (2)	0.042 (2)	0.0256 (18)	0.0127 (18)	-0.0008 (16)	0.0069 (16)
C12	0.041 (2)	0.0314 (19)	0.0285 (18)	0.0109 (17)	0.0032 (16)	-0.0027 (15)
C13	0.0273 (18)	0.0241 (17)	0.0261 (17)	0.0083 (14)	0.0046 (14)	0.0022 (14)
C14	0.0210 (17)	0.0245 (17)	0.0312 (19)	0.0039 (14)	0.0061 (14)	0.0043 (14)
C15	0.0280 (19)	0.0264 (18)	0.039 (2)	-0.0015 (15)	-0.0017 (16)	0.0009 (16)
C16	0.0270 (19)	0.036 (2)	0.039 (2)	-0.0074 (16)	-0.0015 (16)	-0.0034 (17)
C17	0.037 (2)	0.0258 (18)	0.0297 (18)	-0.0115 (15)	0.0109 (16)	-0.0017 (14)
C18	0.043 (2)	0.0220 (18)	0.047 (2)	0.0039 (16)	0.0012 (19)	-0.0002 (16)
C19	0.030 (2)	0.030 (2)	0.038 (2)	0.0000 (15)	-0.0069 (16)	-0.0002 (16)
C20	0.0326 (19)	0.0226 (17)	0.0241 (17)	-0.0065 (14)	0.0013 (15)	-0.0010 (13)
C21	0.0265 (18)	0.0251 (18)	0.0253 (17)	-0.0017 (14)	0.0038 (15)	-0.0057 (14)
O7	0.0325 (15)	0.0290 (14)	0.0265 (13)	0.0058 (11)	0.0053 (11)	0.0007 (11)

Geometric parameters (Å, °)

Но—ОЗ	2.337 (2)	C3—C4	1.388 (4)
Ho—O4 ⁱ	2.364 (2)	C4—C5	1.382 (5)
Ho—O1	2.371 (2)	С4—Н4	0.9300
Ho—O2 ⁱⁱ	2.379 (2)	C5—C6	1.403 (4)
Но—Об	2.478 (2)	С5—Н5	0.9300
Но—О5	2.482 (2)	C6—C7	1.487 (4)
Но—О7	2.546 (2)	C8—C9	1.380 (5)
Ho—N1 ⁱⁱⁱ	2.691 (3)	C8—C13	1.391 (5)
O1—C7	1.257 (4)	С8—Н8	0.9300
O2—C7	1.270 (4)	C9—C10	1.382 (5)
O2—Ho ⁱⁱ	2.379 (2)	С9—Н9	0.9300
O3—C14	1.254 (4)	C10-C11	1.390 (5)
O4—C14	1.263 (4)	C11—C12	1.364 (5)
O4—Ho ⁱ	2.364 (2)	C11—H11	0.9300
O5—C21	1.262 (4)	C12—C13	1.393 (4)
O6—C21	1.270 (4)	C12—H12	0.9300
N1—C3	1.417 (4)	C13—C14	1.482 (4)
N1—Ho ⁱⁱⁱ	2.691 (3)	C15—C16	1.379 (4)
N1—H1A	0.861 (10)	C15—C20	1.390 (5)
N1—H1B	0.850 (10)	C15—H15	0.9300
N2—C10	1.389 (5)	C16—C17	1.392 (5)

N2—H2A	0.849 (10)	C16—H16	0.9300
N2—H2B	0.851 (10)	C17—C18	1.384 (5)
N3—C17	1.405 (4)	C18—C19	1.382 (5)
N3—H3A	0.858 (10)	C18—H18	0.9300
N3—H3B	0.856 (10)	C19—C20	1.383 (5)
C1—C2	1.371 (4)	C19—H19	0.9300
C1—C6	1.383 (4)	C20—C21	1.488 (4)
C1—H1	0.9300	O7—H7A	0.817 (10)
C2—C3	1.395 (4)	O7—H7B	0.816 (10)
С2—Н2	0.9300		
O3—Ho—O4 ⁱ	105.32 (8)	C2—C3—N1	120.5 (3)
O3—Ho—O1	93.52 (8)	C5—C4—C3	120.5 (3)
O4 ⁱ —Ho—O1	142.40 (8)	C5—C4—H4	119.8
O3—Ho—O2 ⁱⁱ	147.74 (8)	C3—C4—H4	119.8
O4 ⁱ —Ho—O2 ⁱⁱ	88.18 (8)	C4—C5—C6	120.2 (3)
O1—Ho—O2 ⁱⁱ	92.87 (8)	C4—C5—H5	119.9
O3—Ho—O6	77.16 (8)	С6—С5—Н5	119.9
O4 ⁱ —Ho—O6	89.61 (8)	C1—C6—C5	118.7 (3)
O1—Ho—O6	126.70 (7)	C1—C6—C7	121.3 (3)
O2 ⁱⁱ —Ho—O6	73.72 (7)	C5—C6—C7	120.0 (3)
O3—Ho—O5	79.32 (8)	O1—C7—O2	122.4 (3)
O4 ⁱ —Ho—O5	140.61 (8)	O1—C7—C6	118.7 (3)
O1—Ho—O5	74.09 (7)	O2—C7—C6	118.9 (3)
O2 ⁱⁱ —Ho—O5	72.15 (8)	C9—C8—C13	121.0 (3)
О6—Но—О5	52.62 (7)	С9—С8—Н8	119.5
O3—Ho—O7	138.60 (8)	С13—С8—Н8	119.5
O4 ⁱ —Ho—O7	69.67 (8)	C8—C9—C10	120.8 (3)
O1—Ho—O7	74.66 (8)	С8—С9—Н9	119.6
O2 ⁱⁱ —Ho—O7	73.43 (8)	С10—С9—Н9	119.6
О6—Но—О7	141.40 (8)	C9—C10—N2	121.0 (4)
О5—Но—О7	131.53 (7)	C9—C10—C11	118.2 (3)
O3—Ho—N1 ⁱⁱⁱ	69.98 (8)	N2-C10-C11	120.8 (4)
O4 ⁱ —Ho—N1 ⁱⁱⁱ	75.45 (9)	C12—C11—C10	121.1 (3)
O1—Ho—N1 ⁱⁱⁱ	81.16 (8)	C12—C11—H11	119.4
O2 ⁱⁱ —Ho—N1 ⁱⁱⁱ	142.27 (8)	C10-C11-H11	119.4
O6—Ho—N1 ⁱⁱⁱ	138.27 (8)	C11—C12—C13	121.2 (3)
O5—Ho—N1 ⁱⁱⁱ	138.98 (8)	C11—C12—H12	119.4
O7—Ho—N1 ⁱⁱⁱ	69.05 (8)	C13—C12—H12	119.4
O3—Ho—C21	75.52 (9)	C8—C13—C12	117.6 (3)
O4 ⁱ —Ho—C21	115.69 (9)	C8—C13—C14	121.5 (3)
O1—Ho—C21	100.27 (9)	C12—C13—C14	120.8 (3)
O2 ⁱⁱ —Ho—C21	72.24 (8)	O3—C14—O4	121.7 (3)
O6—Ho—C21	26.44 (8)	O3—C14—C13	119.6 (3)
O5—Ho—C21	26.24 (8)	O4—C14—C13	118.7 (3)
О7—Но—С21	144.97 (9)	C16—C15—C20	120.6 (3)

N1 ⁱⁱⁱ —Ho—C21	145.48 (9)	C16—C15—H15	119.7
С7—О1—Но	137.4 (2)	C20—C15—H15	119.7
C7—O2—Ho ⁱⁱ	145.5 (2)	C15—C16—C17	120.7 (3)
С14—О3—Но	150.8 (2)	C15—C16—H16	119.6
C14—O4—Ho ⁱ	122.2 (2)	C17—C16—H16	119.6
С21—О5—Но	93.32 (19)	C18—C17—C16	118.7 (3)
С21—О6—Но	93.30 (18)	C18—C17—N3	120.9 (3)
C3—N1—Ho ⁱⁱⁱ	118.1 (2)	C16—C17—N3	120.4 (3)
C3—N1—H1A	111 (2)	C19—C18—C17	120.4 (3)
Ho ⁱⁱⁱ —N1—H1A	105 (2)	C19—C18—H18	119.8
C3—N1—H1B	111 (2)	C17—C18—H18	119.8
Ho ⁱⁱⁱ —N1—H1B	103 (2)	C18—C19—C20	121.2 (3)
H1A—N1—H1B	109 (3)	C18—C19—H19	119.4
C10—N2—H2A	113 (3)	С20—С19—Н19	119.4
C10—N2—H2B	117 (4)	C19—C20—C15	118.5 (3)
H2A—N2—H2B	111.4 (18)	C19—C20—C21	120.4 (3)
C17—N3—H3A	112 (2)	C15—C20—C21	121.1 (3)
C17—N3—H3B	112 (3)	O5—C21—O6	120.5 (3)
H3A—N3—H3B	108.6 (16)	O5—C21—C20	119.9 (3)
C2—C1—C6	121.2 (3)	O6—C21—C20	119.6 (3)
C2—C1—H1	119.4	O5—C21—Ho	60.44 (16)
C6-C1-H1	119.4	06—C21—Ho	60.26 (16)
C1 = C2 = C3	120.4 (3)	С20—С21—Но	1/4.2(2)
C1 - C2 - H2	119.8	$H_0 - O_1 - H_1 A$	120(3) 104(3)
$C_{3} - C_{2} - R_{2}$	119.8	$H_{10} - 07 - H_{10}$	104(3) 110(4)
C4 - C3 - N1	119.0(3) 1204(3)	П/А—О/—П/В	110 (4)
O_3^{-1} H ₂ O_1^{-1} C_7^{-1}	-1677(3)	C13 C8 C9 C10	0.5 (6)
	-107.7(3)	$C_{13} = C_{8} = C_{9} = C_{10}$	-177.6(4)
	-40.8 (4)	C8-C9-C10-N2	-1/7.0 (4)
O2 ^{II} —Ho—O1—C7	44.0 (3)	C8—C9—C10—C11	2.3 (6)
06—Ho—O1—C7	115.8 (3)	C9—C10—C11—C12	-3.5(6)
05—Ho—O1—C7	114.5 (3)	N2—C10—C11—C12	176.4 (4)
	-28.0(3)	C10-C11-C12-C13	1.9 (6)
N1 ^{····} —Ho—O1—C7	-98.6 (3)	C9—C8—C13—C12	-2.2 (6)
С21—Но—О1—С/	116.4 (3)	C9—C8—C13—C14	175.2 (3)
O4 ¹ —Ho—O3—C14	116.5 (5)	C11—C12—C13—C8	1.0 (6)
O1—Ho—O3—C14	-96.4 (5)	C11—C12—C13—C14	-176.4 (3)
O2 ¹¹ —Ho—O3—C14	4.7 (5)	Ho-O3-C14-O4	-107.2 (5)
O6—Ho—O3—C14	30.5 (5)	Ho-O3-C14-C13	71.2 (6)
O5—Ho—O3—C14	-23.3 (4)	Ho ¹ O4C14O3	1.3 (4)
O7—Ho—O3—C14	-167.0 (4)	Ho ⁱ —O4—C14—C13	-177.1 (2)
N1 ⁱⁱⁱ —Ho—O3—C14	-175.6 (5)	C8—C13—C14—O3	-169.8 (3)
С21—Но—О3—С14	3.3 (4)	C12—C13—C14—O3	7.5 (5)
O3—Ho—O5—C21	78.9 (2)	C8—C13—C14—O4	8.7 (5)
O4 ⁱ —Ho—O5—C21	-22.3 (2)	C12—C13—C14—O4	-174.1 (3)
O1—Ho—O5—C21	175.7 (2)	C20-C15-C16-C17	0.4 (5)

O2 ⁱⁱ —Ho—O5—C21	-85.9 (2)	C15-C16-C17-C18	-0.3 (5)		
O6—Ho—O5—C21	-3.06 (18)	C15-C16-C17-N3	-179.3 (3)		
O7—Ho—O5—C21	-132.63 (19)	C16-C17-C18-C19	-0.1 (5)		
N1 ⁱⁱⁱ —Ho—O5—C21	120.5 (2)	N3-C17-C18-C19	178.9 (3)		
O3—Ho—O6—C21	-83.24 (19)	C17—C18—C19—C20	0.4 (6)		
O4 ⁱ —Ho—O6—C21	170.95 (19)	C18—C19—C20—C15	-0.3 (5)		
O1—Ho—O6—C21	1.5 (2)	C18—C19—C20—C21	179.4 (3)		
O2 ⁱⁱ —Ho—O6—C21	82.74 (19)	C16-C15-C20-C19	-0.1 (5)		
O5—Ho—O6—C21	3.04 (18)	C16-C15-C20-C21	-179.8 (3)		
O7—Ho—O6—C21	115.4 (2)	Но—О5—С21—О6	5.5 (3)		
N1 ⁱⁱⁱ —Ho—O6—C21	-121.70 (19)	Но—О5—С21—С20	-173.3 (3)		
C6—C1—C2—C3	2.2 (5)	Но—Об—С21—О5	-5.5 (3)		
C1—C2—C3—C4	-1.8 (5)	Но—Об—С21—С20	173.3 (3)		
C1—C2—C3—N1	174.7 (3)	C19—C20—C21—O5	20.0 (5)		
Ho ⁱⁱⁱ —N1—C3—C4	92.5 (3)	C15—C20—C21—O5	-160.3 (3)		
Ho ⁱⁱⁱ —N1—C3—C2	-83.9 (3)	C19—C20—C21—O6	-158.8 (3)		
C2—C3—C4—C5	0.4 (5)	C15—C20—C21—O6	20.8 (5)		
N1—C3—C4—C5	-176.1 (3)	O3—Ho—C21—O5	-95.2 (2)		
C3—C4—C5—C6	0.6 (5)	O4 ⁱ —Ho—C21—O5	164.48 (17)		
C2-C1-C6-C5	-1.2 (5)	O1—Ho—C21—O5	-4.2 (2)		
C2—C1—C6—C7	-178.1 (3)	O2 ⁱⁱ —Ho—C21—O5	85.51 (19)		
C4—C5—C6—C1	-0.2 (5)	O6—Ho—C21—O5	174.5 (3)		
C4—C5—C6—C7	176.7 (3)	О7—Но—С21—О5	73.7 (2)		
Ho—O1—C7—O2	-11.6 (5)	N1 ⁱⁱⁱ —Ho—C21—O5	-93.5 (2)		
Но—О1—С7—С6	167.5 (2)	O3—Ho—C21—O6	90.23 (19)		
Ho ⁱⁱ —O2—C7—O1	-91.0 (4)	O4 ⁱ —Ho—C21—O6	-10.1 (2)		
Ho ⁱⁱ —O2—C7—C6	89.9 (4)	O1—Ho—C21—O6	-178.77 (18)		
C1—C6—C7—O1	5.5 (4)	O2 ⁱⁱ —Ho—C21—O6	-89.03 (19)		
C5—C6—C7—O1	-171.3 (3)	О5—Но—С21—О6	-174.5 (3)		
C1—C6—C7—O2	-175.3 (3)	О7—Но—С21—Об	-100.9 (2)		
C5—C6—C7—O2	7.8 (4)	N1 ⁱⁱⁱ —Ho—C21—O6	91.9 (2)		
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+2$; (ii) $-x+1$, $-y+1$, $-z+1$; (iii) $-x$, $-y+1$, $-z+1$.					

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
N1—H1A···O6 ^{iv}	0.861 (10)	2.046 (12)	2.902 (3)	172 (3)	
$N1$ — $H1B$ ··· $N2^{v}$	0.850 (10)	2.510 (11)	3.360 (5)	177 (3)	
N2—H2A····O7 ^{vi}	0.849 (10)	2.43 (3)	3.139 (5)	142 (3)	
N3—H3A···O5 ^{vii}	0.858 (10)	2.23 (2)	2.974 (4)	145 (3)	
O7—H7B…O2	0.816 (10)	2.000 (18)	2.773 (3)	158 (4)	
O7—H7A…N3 ^{viii}	0.817 (10)	2.079 (16)	2.875 (4)	165 (5)	
Symmetry codes: (iv) x-1, y, z-1; (v) x-1/2, -y+3/2, z-1/2; (vi) -x+1/2, y+1/2, -z+3/2; (vii) x+1/2, -y+3/2, z+1/2; (viii) -x+3/2, y-1/2, -z+3/2.					

Fig. 2

